
Single-arm three-wave interferometer for 
measuring dispersion of short lengths of fiber 

Michael A. Galle, Waleed Mohammed, Li Qian and Peter W. E. Smith 

Dept. of Electrical and Computer Engineering, University of Toronto  
10 King’s College Road, Toronto, Ontario, Canada M5S 3G4 

michael.galle@utoronto.ca, http://www.ecf.utoronto.ca/~qianli 

Abstract:  We present a simple fiber-based single-arm spectral 
interferometer to measure directly the second-order dispersion parameter of 
short lengths of fiber (< 50 cm). The standard deviation of the measured 
dispersion on a 39.5-cm-long SMF28TM fiber is 1×10-4 ps/nm, 
corresponding to 1% relative error, without employing any curve fitting. 
Our technique measures the second-order dispersion by examining the 
envelope of the interference pattern produced by three reflections: two from 
the facets of the test fiber and one from a mirror placed away from the fiber 
facet at a distance that introduces the same group delay as the test fiber at 
the measured wavelength. The operational constraints on system 
parameters, such as required bandwidth, wavelength resolution, and fiber 
length, are discussed in detail. Experimental verification of this technique is 
carried out via comparison of measurements of single mode fiber 
(SMF28TM) with published data and via comparison of measurements of a 
dispersion compensating fiber with those taken using conventional 
techniques. Moreover, we used this new technique to measure the 
dispersion coefficient of a 45-cm-long twin-hole fiber over a 70 nm 
bandwidth. It is the first time dispersion measurement on this specialty fiber 
is reported.    
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1. Introduction  

Dispersion is a critical parameter in the design of high-speed photonic systems since it affects 
the system bandwidth via pulse broadening. Dispersion engineering is also widely used in 
ultrafast optical systems. Two of the most widely used commercial dispersion measurement 
techniques are the time of flight (TOF) technique [1] and the Modulation Phase Shift (MPS) 
technique [2, 3]. In the TOF technique, the second-order dispersion parameter, hereafter 
referred to simply as dispersion, is determined by measuring the relative temporal delay 
between pulses at different wavelengths. In the MPS technique, an optical signal is amplitude 
modulated by an RF signal and the dispersion parameter is determined by measuring the RF 
phase delay experienced by the optical carriers at the different wavelengths. Measurement 
precision achievable by the TOF and MPS techniques are on the order of 1 ps/nm [2] and 0.07 
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ps/nm [4], respectively. Due to its higher precision, MPS has become the industry standard 
method for measuring dispersion in optical fibers. However, MPS is expensive to implement 
and its precision is limited by both the stability and the jitter in the RF signal [5]. Moreover, 
both the TOF and the MPS techniques require long lengths of fiber, from several tens of 
meters to several kilometers. Therefore, they are not desirable for characterizing specialty 
fibers or gain fibers, of which large fiber lengths are expensive to acquire or not available. 
Also, when fiber uniformity changes significantly along its length, the dispersion of a long 
span of fiber cannot be used to accurately represent that of a short section of fiber. In such 
cases, dispersion measurement performed directly on short fiber samples is desirable. 

Interferometric techniques, on the other hand, are capable of measuring dispersion on 
fibers of length below 1m [6]. There are two categories of interferometric techniques: 
temporal and spectral. Temporal interferometry [7-11] employs a broadband source and a 
variable optical path to produce a temporal interferogram between a fixed path through the 
test fiber and the variable path. The spectral amplitude and phase are then determined from 
the Fourier transform of the temporal interferogram. The dispersion is indirectly obtained by 
taking the derivative of the spectral phase. A precision of 0.0015 ps/nm measured on a 0.814-
m-long photonic crystal fiber [9] was recently reported using temporal interferometry. The 
main disadvantage of temporal interferometry is that it is susceptible to noise resulting from 
both translation inaccuracy and vibration of the optics in the variable path. A tracking laser is 
typically required to calibrate the delay path length [8, 9].  

Spectral interferometry is generally more stable since the arms of the interferometer are 
kept stationary, and no tracking laser is necessary. It is often chosen for the dispersion 
characterization of photonic components [12-17] and depth-resolved optical imaging [18] 
such as optical coherence tomography (OCT) [19-24]. In spectral interferometry, spectral 
fringes are produced by the interference of broadband light after propagating through two 
paths: one contains the test fiber and the other is a reference path containing a fixed delay. 
The spectral phase of the lightwave passing through the test fiber relative to that through the 
reference path can be extracted from the fringe pattern, and in principle, higher order 
dispersion can be derived. Though accurate results on group delay, dispersion, and dispersion 
slope have been reported using this indirect method [16], the requirement on raw 
measurement accuracy is high and a number of curve fittings and data processing steps are 
required to obtain higher order dispersions, which may affect the accuracy of the results. In 
contrast, it is also possible to measure the second-order dispersion directly by employing a 
balanced dual-arm interferometer [6] with an adjustable optical path in one arm. The 
adjustable arm is adjusted to have the same group delay as the test fiber to remove the effect 
of the large linear dispersion in the interferogram. A precision of 0.00007 ps/nm has been 
reported on a SMF of 1m using this technique [6].  
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Fig. 1. (a). General dual-arm balanced Michelson interferometer. The spectral interferogram is 
produced by two reflected waves U1 and U2. (b) Single-arm interferometer where the spectral 
interferogram is produced by three reflected waves; Uo, U1 and U2. 

 
The balanced dual-arm interferometers are typically in a Mach-Zehnder or a Michelson 

configuration. In the balanced Michelson interferometer set up (Fig. 1(a)), a spectral 
interferogram is created from the reflections of the two paths U1 and U2, as shown.  One 
drawback of the fiber-based dual-arm configuration is that the optical path lengths of the two 
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fiber leads coming out of the coupler ideally need to be exactly the same; otherwise an extra 
set of interference fringes is created by the reflections from the two end facets of the coupler 
fiber leads, which distorts the spectral interferogram. Alternatively and more practically, the 
two leads are intentionally made to have a large length difference so that the undesirable 
fringes are “fast” varying and can be eliminated by a low-resolution spectrometer. In the latter 
case, the dispersion of the coupler fiber will be added to that of the test fiber, and therefore the 
former must be calibrated precisely.  

In this paper we introduce an alternative and simpler method, the Single-Arm 
Interferometer (SAI) as shown in Fig. 1(b), for the direct measurement of dispersion in short 
fibers. This not only is a much simpler configuration, it also eliminates the need to calibrate 
the dispersion of the fibers in the measurement system (assuming the dispersion introduced by 
the collimating lens is negligible). Its simpler construction also makes it less susceptible to 
polarization and phase instabilities. Like the balanced Michelson interferometer, the SAI is 
also balanced since the free space path is adjusted to cancel the group delay of the test fiber, 
and both the second- and third-order dispersions can be obtained directly. The conceptual 
difference between the two techniques is that, in the SAI, the interference pattern is produced 
by three waves: two from the reflections at the facets of the test fiber and one from a mirror 
placed behind it (as shown by Uo, U1, and U2 in Fig. 1(b)). The beating between the 
interference fringes produced by the test fiber and those by the air path generates an envelope 
which is equivalent to the interference pattern produced by two waves (U1 and U2 in Fig. 1(a)) 
in a dual-arm interferometer.  

The SAI configuration appears similar to common-path interferometers, often used for 
depth imaging as in Common-Path Optical Coherence Tomography (CP-OCT) [25, 26]. It is, 
however, fundamentally different from CP-OCT since it utilizes 3 reflections, and extracts the 
dispersion parameters directly from the envelope of the interference pattern. In the next 
section, we will briefly present the theoretical representation of the interference pattern, the 
phase between the adjacent peaks/troughs of the envelope, and its relationship to the 
dispersion.  

2. Theory 

In a SAI, the dispersion parameter is obtained from the envelope of the interference pattern 
generated by three waves Uo, U1 and U2 as depicted in Fig. 1(b). The amplitudes of U0 and U1 
are in general proportional to the Fresnel reflection coefficients for a glass-air interface. The 
amplitude of U2 depends on the amount of light coupled back to the fiber. U1 and U2 can be 
expressed relative to U0 in amplitude and in phase by: 
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In (1) Lf and Lair are the lengths of the test fiber and the air path, respectively. β and ko are, 
respectively, the propagation constant of the fundamental mode in fiber, and the propagation 
constant in free space. α and γ are the relative field amplitudes with respect to U0.  

The intensity interference pattern produced by the superposition of U0, U1 and U2 is 
represented by: 
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The expression in (2) can be treated as a fast-varying “carrier” (with respect to frequency 
or wavelength) modified by an upper and a lower slow-varying envelope, as shown in Fig. 2 
(left), which depicts the simulated spectral interferogram generated by the 3-wave SAI with a 
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30-cm SMF28 fiber as the test fiber. Upon closer examination (Fig. 2, lower right), the 
“carrier” is not a pure sinusoidal function, because there are three fast-varying phases in (2), 
2(βLf + koLair), (βLf + koLair), and 2βLf, all of which vary much faster  than the phase of the 
envelope (φenvelope ), which equals βLf  –  koLair.  When γ is large (>0.5), it can be shown that 
the upper envelope is approximated by  

 ( ))cos(42)1(21 222
_ envelopeoenvupper UI φαγγαγα ++−+++≈   (3) 
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Fig. 2. Simulated spectral interferogram produced by the setup in Fig. 1(b) for a 30-cm-long 
SMF28TM as the test fiber, with α = γ =1. The parameters used for the SMF28TM fiber are given 
in [27]. The thick green line represents the function calculated by Eq. (3), which is a close 
approximation of the upper envelope. Bmin denotes the minimum required bandwidth, and 
Bsource is the source bandwidth, which determines the extent of the interferogram. λ0 is the 
balanced wavelength. λ1 and λ2 are wavelengths corresponding to two adjacent troughs on one 
side of λ0. 

The envelope function expressed by (3) is plotted in Fig. 2 in green, which is a good 
approximation of the actual envelope of the carrier. Replacing β with 2πneff/λ, where neff is the 
effective index of the fiber, and applying Taylor expansion to neff, we can obtain the following 
expression for φenvelope [6]: 
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The first term in (4) (in square brackets) disappears when Lair is adjusted to balance out the 
group delay of the test fiber at λo. λo is herein referred to as the balanced wavelength. The 
envelope phase difference at two separate wavelengths, λ1 and λ2, that correspond to two 
peaks (or two troughs) of the envelope is : 
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Note that m is the number of fringes between the two wavelengths. If this phase difference 

is taken using two pairs of peaks/troughs (e.g., λ1 & λ2, and λ-1 & λ-2), the result is a system of 

equations in which 
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can be solved directly [6]. Note that, if we ignore 

the third-order dispersion, then only one pair of wavelengths (e.g., λ1 & λ2) is required to 
calculate the second-order dispersion, however, it would be less accurate. The dispersion 
parameter D can then be found as follows: 
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We remark that the birefringence in the test fiber will affect the polarization states of the 
two reflected waves and therefore will affect fringe visibility. This effect is typically small for 
weakly birefringent fiber since the length of the test fiber is small, and a polarization 
controller is not necessary. (Note, the measured dispersion does not depend on fringe 
visibility, though a high visibility will allow a more accurate determination of the peak/tough 
wavelengths.) In the case of a strongly birefringent test fiber, a polarization controller can be 
placed before the input port of the circulator (Fig. 1(b)) to make the input polarization to the 
test fiber one of its principal states of polarization, and fringe visibility can be maximized. In 
principle, this technique can also be used to determine the dispersion parameters for the two 
polarization modes of the fiber. 

The main difference between the interferogram produced in this setup and those produced 
by balanced dual-arm interferometers is the presence of the fast “carrier”. In the case of a 
balanced dual-arm interferometer, the dispersion is calculated from the interference pattern, 
whereas here the dispersion is calculated from the envelope of the interference pattern. The 
advantage of our scheme is that only a single arm is sufficient, and there is no need for 
calibration.  

3. Constraints on system parameters 

In this section, we discuss the constraints on several important system parameters: wavelength 
resolution of the measurement, minimum required bandwidth of the source, measurable 
bandwidth of the dispersion curve, and the test fiber length. The relationships between these 
parameters are derived and discussed. 

3.1 Wavelength resolution of dispersion measurement 

It is important to note that the wavelength resolution of the instrument (e.g., the step size of 
the tunable laser) is not the wavelength resolution of the measured dispersion curve. The 
former is related to the spectral resolution of the interferogram, from which only one 
dispersion value (at the balanced wavelength) can be obtained. The latter is related to the 
minimum step size of the mirror translation. This is because variation of the air path changes 
the balanced wavelength (λo). The relationship between the air path length Lair and the fiber 
length Lf at λo is given by:  
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Taking the derivative of Lair with respect to λo and using the definition given by (6), we 
obtain 
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From (8), the relationship between a change in the balanced wavelength, δλo,  and the 
change in the air path length, δLair,  is given by:   
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Thus the minimum step size of the air path sets the wavelength resolution of the measured 
dispersion curve. Note the wavelength resolution is also inversely proportional to the 
dispersion-length product of the test fiber. We will later show that many other system 
parameters are dependent on this product. As a numerical example, for a step size of 0.1μm, 
assuming a 50-cm-long SMF28TM test fiber, the wavelength resolution is 0.1nm, which is 
sufficient for most applications Note also that the sign of the dispersion can be determined by 
varying the air path length and observing the change in the balanced wavelength. From (9), a 
negative dispersion value should result in an increase in the balanced wavelength for a 
decrease in the air path length. 

3.2 Minimum required source bandwidth (Bmin) 

A minimum number of envelope fringes is required for accurate measurements of dispersion. 
From Section 2, as long as the balanced wavelength (λ0) and four other wavelengths 
corresponding to the peaks (or troughs) of the envelope fringes are captured within the source 
bandwidth, Bsource, (see Fig. 2), one can determine the dispersion D(λ0). It is found in practice 
that more accurate measurements require selecting two peaks (or troughs) on either side of λ0, 
as indicated by Bmin on Fig. 2.  

For a given test fiber, the dispersion-length product is fixed. Therefore, the only factor that 
limits the number of envelope fringes is the source bandwidth, Bsource. The longer the fiber, or 
the larger the dispersion, the more closely spaced the envelope fringes, and hence the smaller 
the required bandwidth. In order to determine Bmin quantitatively, we need to determine the 
maximum value for the wavelength spacing (λ2−λ0), as shown in Fig. 2. From (4), ignoring 
the 3rd-order term, we can obtain the envelope phase difference |φenvelope(λ1) − φenvelope (λ0)|, 
which has an upper bound of π, since the first trough occurs at λ1:    
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Applying the definition of dispersion in (6), we can therefore find the upper bound of the 
wavelength spacing (λ1−λ0): 
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Next, we examine the wavelength spacing between λ1 and λ2. From (5), ignoring the 3rd-
order term and applying (6), we get, 
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Combining Eqs. (11) and (12), we get the upper bound for the wavelength spacing λ2−λ0: 
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and the minimum required source bandwidth Bmin should be not less than the upper bound of 
2(λ2−λ0), i.e.,  
 

fcDL
B 0

min 22
λ

=  (14) 

It is clear that the dispersion-length product of the test fiber also affects the minimum 
required bandwidth. Using a similar numerical example, assuming a 50-cm-long SMF test 
fiber and 1.55μm as the balanced wavelength, the minimum required bandwidth is 85 nm. 

3.3 Measurable bandwidth of the dispersion curve Bmea 

Since each spectral interferogram produces one dispersion value at the balanced wavelength, 
λ0, to obtain dispersion versus wavelength, a number of interferograms are recorded at various 
balanced wavelengths by setting the appropriate air path lengths. Since each interferogram 
should be taken over a bandwidth of at least Bmin, from Fig. 3, one can see that the measurable 
bandwidth of the dispersion curve is the difference between the available source bandwidth 
Bsource and the minimum required bandwidth Bmin, that is, 

 

f

sourcesourcemea
cDL

BBBB 0
min 22

λ
−≥−=  (15) 

Alternatively, if we do not require two of the troughs to be on each side of λ0, then the 
measurable bandwidth Bmea can be larger. In order to accurately determine λ0, we would still 
need the central fringe (from λ−1 to λ1 in Fig. 2) to be entirely visible within the measured 
spectral range. Therefore, 

 ( )
f

sourcesourcemea
cDL

BBB 0
01 22

λλλ −≥−−=   (16) 

Equation (15) or (16) gives the lower bound for the measurable bandwidth, which 
assumes the widest possible central fringe. In practice, since φenvelope (λ0) cannot be controlled, 
the width of the central fringe can be anywhere between zero and twice the limit of (11). 
Therefore, Bmea can be as large as Bsource in certain cases. 

Examination of (15) or (16) shows that increasing the dispersion-length product of the test 
fiber increases Bmea. Note that for a given measurement system, Bsource is fixed, so the only 
parameter that can be used to extend Bmea is Lf. The next section discusses the range of fiber 
lengths that can be measured using the SAI technique.  

Figure 3 summarizes the dependence of wavelength resolution, the minimum required 
bandwidth, and the measurable bandwidth on the dispersion-length product of the test fiber.  

 

#87137 - $15.00 USD Received 4 Sep 2007; revised 25 Oct 2007; accepted 27 Oct 2007; published 4 Dec 2007

(C) 2007 OSA 10 December 2007 / Vol. 15,  No. 25 / OPTICS EXPRESS  16903



0 0.005 0.01 0.015 0.02
0

2

4

6

8

10

DL
f
 (ps/nm)

R
es

ol
ut

io
n 

(n
m

)

 
(a) 

0 0.005 0.01 0.015 0.02
0

50

100

150

200

DL
f
 (ps/nm)

B
m

in
 in

 g
re

en
   

&
   

B
m

e
as

 in
 re

d 
(n

m
)

(b) 
 

Fig. 3. (a). The dependence of wavelength resolution on the dispersion-length product (DLf). 
(b) The dependence of the minimum required bandwidth (Bmin) and the measurable bandwidth 
(Bmea), on the DLf product. Note we assume the values λo = 1550nm and δLair = 5μm and Bsource 
= 130nm for these figures. 

3.4 Minimum fiber length  

The bandwidth of the source limits the minimum fiber length, since if the fiber length is too 
small, the spectral interferogram will not contain sufficient envelope fringes for an accurate 
dispersion measurement. Thus the requirement is that: 
  
 

sourceBB ≤min
 (16) 

Using (15), we have: 

 
2

28

source

o
f

cDB
L

λ≥       (17) 

Note that for a longer fiber there will be a greater measurement bandwidth (according to 
(15) or (16)) and a higher wavelength resolution (9). As a numerical example, for a source 
bandwidth of 130nm, the minimum length for a SMF28TM fiber is 0.23m.  

3.5 Maximum fiber length  

The SAI method uses the slow-varying envelope function to obtain dispersion. Though the 
“carrier” fringes are not of interest, they still need to be resolved during measurement, 
otherwise the envelope shape cannot be preserved. The carrier fringe spacing is directly 
affected by the length of the fiber under test, Lf. A longer fiber will lead to narrower carrier 
fringes. From (2), it can be seen that, though the carrier is not a pure sinusoidal function, its 
fast-varying phase is approximately periodic, with a period that is on the order of λ0

2/2neffLf. If 
we apply the Nyquist sampling criterion and assume that at least 2 sample points have to be 
included in one fringe, then the maximum limit on the fiber length becomes: 

 
λ

λ
Δ

≤
eff

o
f n

L
4

2
  (18) 

where Δλ is the wavelength resolution of the measurement system (or, to be more specific, the 
wavelength step size of the tunable laser). If the fiber length limit is exceeded, aliasing occurs.  

The preceding analysis assumes that the interferogram is sampled without aliasing (within 
the Nyquist limit). It is useful to point out, since we are interested only in the envelope of the 
interferogram, it is possible to use fiber lengths exceeding the limit given in (18). For a 
sufficiently long test fiber, many carrier fringes can appear within a small wavelength window 
over which the envelope function remains relatively constant. When operating beyond the 
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Nyquist limit, it is possible and probable that one or more of the carrier fringe peaks are 
sampled (given a certain tolerance) within the wavelength window, even though not all of the 
peaks are captured. Therefore, by taking only one maximum value within every wavelength 
window, one will be able to obtain an accurate representation of the envelope of the 
interferogram, even if the interferogram itself is not sampled adequately. Though it is possible 
(but not probable) that the wavelength step of the measurement is an exact integer multiple of 
the carrier period, and none of the carrier fringe peaks is captured, this “unlucky” situation 
can be prevented by using a non-uniform wavelength step size. For example, one can use 
random step sizes that has a distribution (e.g., a Gaussian distribution) about an average value. 
In practice, the instrument’s inherent inaccuracy in wavelength sweeping usually provides the 
required randomness of the wavelength step size, and test fiber length can well exceed the 
limit set in (18). For example, if the step sizes exhibit a Gaussian distribution with a mean of 
1 pm and a standard deviation of 1 pm, then a detailed statistical analysis (not shown here for 
the purpose of brevity) shows that the probability of sampling at least one carrier peak within 
a 0.25 nm window is greater than 99% regardless of fiber length. Here, “capturing” a peak 
means a sample is taken within a region of ±1% of the carrier period, centered on the carrier 
peak. Ultimately, the test fiber length is limited by the laser linewidth (which can be much 
smaller than the carrier fringe period) and the maximum air path length.  

4. Experimental results and analysis 

The experimental set up is shown in Fig. 1(b). The tunable laser source (Agilent 81640A) and 
detector (Agilent 81632A) used are plug-in modules of the Agilent 8164A Lightwave 
Measurement System. The source has a linewidth of 100KHz, a tuning range of 130 nm 
centered around 1550 nm, and a minimum average wavelength step of 1 pm (with a standard 
deviation 0.17 pm). The unit records the detector readings and the wavelength readings as the 
source wavelength is swept. Currently, due to the limited onboard memory of the detector 
module, data transfer between the module and the computer is required every 1 nm of scan, 
which results in a very long measurement time (about 10 minutes) for obtaining one spectral 
interferogram over the entire tuning range. With sufficient memory in newer modules, the 
measurement time can be shortened to be within a few seconds, since step accuracy is not 
required (and indeed should be avoided, see Section 3.5) during scan. An angle-polished 
connector is used at the launch fiber as shown in Fig. 1(b) in order to eliminate the reflection 
from this facet. The reflections from the collimation lens surfaces are suppressed by using an 
antireflection coated lens. The dispersion of the lens is negligible. The mirror tilt is adjusted to 
obtain maximum fringe visibility. The mirror translation is controlled manually, and the 
minimum step is approximately 5μm. 

In the following sections, we will apply the SAI technique to measure the dispersion of 
three different fibers: a standard SMF28TM single mode fiber, a Dispersion Compensating 
Fiber (DCF) and a Twin-Hole Fiber (THF). In measuring the envelope of the spectral 
interferogram, the total scanning region is divided into 0.25-nm-wide wavelength bands, over 
which the envelope is considered constant. The peak value within each band is extracted to 
produce the spectral envelope.   

4.1 Corning SMF28TM 

The dispersion properties of SMF28TM are well known and hence it was used to verify the 
SAI technique. In this experiment we used a 39.5-cm piece of the SMF28TM fiber, and the 
result is shown in Fig. 4. The wavelength resolution of the measured dispersion curve, as 
determined by (9), is 2.4 nm. The measurable bandwidth according to (15) is 30 nm, which is 
the bandwidth actually used, as shown in Fig. 4(b). The standard deviation of the 
measurement results is calculated from their deviations to the linear fit of the measured 
dispersion values. This is justified as the dispersion slope can be treated as constant within the 
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30-nm bandwidth (i.e., 4th-order dispersion is neglected.) The measured standard deviation is 
0.28 ps/nm-km, which corresponds to a relative error of 1.6%. When multiplied by the length 
of the fiber, this translates into a standard deviation of 0.00011 ps/nm.  
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Fig. 4. (a). Experimentally obtained spectral envelope for a 39.5cm SMF-28 fiber. (b) 
Measured dispersion compared to published dispersion [27] for the same fiber.  

 
A comparison between the measured and simulated interference patterns for SMF-28 is 

shown in Fig. 4(b). The slope of the measured dispersion closely matches that of the 
theoretical dispersion curve.  

4.2 Dispersion Compensating Fiber (DCF) 

As a second method of verification, we measured dispersion on a short piece of DCF, whose 
dispersion value is approximately one order of magnitude higher than that of SMF28TM, and 
has an opposite sign. We used a 15.5 cm piece of DCF fiber, and the measurement results are 
given in Fig. 5. To verify the accuracy of our measurement, we also measured dispersion on 
an identical 100-m DCF using a commercial dispersion measurement system (Agilent 
86038A), which employs the MPS technique. Again, our measured dispersion values are in 
good agreement with those measured by the commercial device, though the fiber length we 
used is almost 3-orders of magnitude smaller.  
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Fig. 5. Comparison of dispersion values measured by two methods. The red points are obtained 
on a 100-m-long DCF using the Agilent 83427A Chromatic Dispersion Measurement System. 
The black points are obtained on a 15.5cm DCF using the SAI.  
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The standard deviation of the measured data (with reference to a linear fit) using the SAI 
is 0.99 ps/nm-km, which corresponds to a relative error of 0.9%. When multiplied by the 
length of the fiber, this translates into a standard deviation of 0.00015 ps/nm.  

4.3 Twin-Hole Fiber (THF)  

THF has been used for fiber poling to facilitate parametric generation in fibers [28, 29] or 
making fiber-based electro-optic switching devices [30]. In such nonlinear applications, 
dispersion of the fiber is an important parameter to be determined. However, dispersion 
property of the THF has never been reported, partly due to the lack of uniform THF over a 
large length. The fiber has a 3-μm-diameter core and a numerical aperture that is higher than 
that of SMF28TM. The core is Ge-doped silica, and has an index similar to that of SMF28TM. 
Therefore, we expect the dispersion of THF to be slightly lower than that of SMF. We chose a 
THF length of 45 cm, and our measurement results are shown in Fig. 6. The standard 
deviation of the measured data (with reference to the linear fit) is 0.375 ps/nm-km, which 
corresponds to a relative error of 2.9%. Multiplied by the fiber length, this translates into a 
standard deviation of 0.00017 ps/nm. The slightly larger standard deviation compared to those 
for the SMF and DCF measurement is due to the higher loss in fiber coupling between the 
SMF and the THF, and hence the lower and more noisy signal level during the THF 
measurement.  
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Fig. 6. Dispersion measured using a 45-cm long Twin Hole Fiber  

5. Conclusion 

In this paper we presented a novel fiber-based SAI to measure directly the dispersion 
parameters in short lengths of fiber (< 50 cm), achieving a standard deviation as low as 
0.0001 ps/nm without any curve fitting. The technique utilizes the spectral interferogram 
created by three reflections and extracts the second-order dispersion from the envelope of the 
interferogram. The technique is shown to be a simpler alternative to the Michelson or Mach- 
Zehnder interferometers. By eliminating one of the interferometer arms, the technique does 
not require calibration and is less susceptible to polarization and phase fluctuations. The 
constraints on the operating parameters of this technique, such as wavelength resolution, fiber 
length, and measurable bandwidth, were discussed in detail. This method can in general be 
used to measure the dispersion of any waveguide and is not limited to optical fiber. 

We verified the technique experimentally by performing dispersion measurements on 
SMF28TM fiber and DCF samples. Our measurement results on the SMF28TM fiber showed 
good agreement with the simulated dispersion values based on published fiber geometry and 
material properties. Our measurement results on DCF agreed well with the measurement 
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performed on a much longer DCF using a commercial dispersion measurement system. In 
addition to SMF28TM and DCF, single arm interferometry was used to measure the dispersion 
parameter of a twin-hole fiber for the first time.  
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